Functional organization of a neural network for aversive olfactory learning in Caenorhabditis elegans

Citation:

* Ha HI, Hendricks M, Shen Y, Gabel CV, Fang-Yen C, Qin Y, Colon-Ramos D, Shen K, Samuel AD, Zhang Y. Functional organization of a neural network for aversive olfactory learning in Caenorhabditis elegans. Neuron. 2010;68 :1173-86.

Date Published:

Dec 22

Abstract:

Many animals use their olfactory systems to learn to avoid dangers, but how neural circuits encode naive and learned olfactory preferences, and switch between those preferences, is poorly understood. Here, we map an olfactory network, from sensory input to motor output, which regulates the learned olfactory aversion of Caenorhabditis elegans for the smell of pathogenic bacteria. Naive animals prefer smells of pathogens but animals trained with pathogens lose this attraction. We find that two different neural circuits subserve these preferences, with one required for the naive preference and the other specifically for the learned preference. Calcium imaging and behavioral analysis reveal that the naive preference reflects the direct transduction of the activity of olfactory sensory neurons into motor response, whereas the learned preference involves modulations to signal transduction to downstream neurons to alter motor response. Thus, two different neural circuits regulate a behavioral switch between naive and learned olfactory preferences.

Notes:

Ha, Heon-ickHendricks, MichaelShen, YuGabel, Christopher VFang-Yen, ChristopherQin, YuqiColon-Ramos, DanielShen, KangSamuel, Aravinthan D TZhang, Yuneng4R00NS57931/NS/NINDS NIH HHS/R01 DC009852/DC/NIDCD NIH HHS/R01 DC009852-01A1/DC/NIDCD NIH HHS/Howard Hughes Medical Institute/Comparative StudyResearch Support, N.I.H., ExtramuralResearch Support, Non-U.S. Gov'tResearch Support, U.S. Gov't, Non-P.H.S.2010/12/22 06:00Neuron. 2010 Dec 22;68(6):1173-86. doi: 10.1016/j.neuron.2010.11.025.

See also: Pubs at Harvard
Last updated on 06/11/2015