Publications

2023
* Lee HJ#, Liang J#, Chaudhary S, Moon S, Yu Z, Wu T, Liu H, Choi M-K, Zhang Y^, Lu H^. Automated cell annotation in multi-cell images using an improved CRF_ID algorithm. #co-first author; ^co-corresponding author; eLife https://doi.org/10.7554/eLife.89050.1. 2023. Publisher's VersionAbstract
Cell identification is an important yet difficult process in data analysis of biological images. Previously, we developed an automated cell identification method called CRF_ID and demonstrated its high performance in C. elegans whole-brain images (Chaudhary et al, 2021). However, because the method was optimized for whole-brain imaging, comparable performance could not be guaranteed for application in commonly used C. elegans multi-cell images that display a subpopulation of cells. Here, we present an advance CRF_ID 2.0 that expands the generalizability of the method to multi-cell imaging beyond whole-brain imaging. To illustrate the application of the advance, we show the characterization of CRF_ID 2.0 in multi-cell imaging and cell-specific gene expression analysis in C. elegans. This work demonstrates that high accuracy automated cell annotation in multi-cell imaging can expedite cell identification and reduce its subjectivity in C. elegans and potentially other biological images of various origins.
* Wu T#, Ge M#, Wu M, Duan F, Liang J, Chen M, Gracida X, Liu H, Yang W, Dar ARouf, et al. Pathogenic bacteria modulate pheromone response to promote mating. #, co-first authors. Nature. 2023;613 :324-331. Publisher's VersionAbstract

Pathogens generate ubiquitous selective pressures and host–pathogen interactions alter social behaviours in many animals1–4. However, very little is known about the neuronal mechanisms underlying pathogen-induced changes in social behaviour. Here we show that in adult Caenorhabditis elegans hermaphrodites, exposure to a bacterial pathogen (Pseudomonas aeruginosa) modulates sensory responses to pheromones by inducing the expression of the chemoreceptor STR-44 to promote mating. Under standard conditions, C. elegans hermaphrodites avoid a mixture of ascaroside pheromones to facilitate dispersal5–13. We find that exposure to the pathogenic Pseudomonas bacteria enables pheromone responses in AWA sensory neurons, which mediate attractive chemotaxis, to suppress the avoidance. Pathogen exposure induces str-44 expression in AWA neurons, a process regulated by a transcription factor zip-5 that also displays a pathogen-induced increase in expression in AWA. STR-44 acts as a pheromone receptor and its function in AWA neurons is required for pathogen-induced AWA pheromone response and suppression of pheromone avoidance. Furthermore, we show that C. elegans hermaphrodites, which reproduce mainly through self-fertilization, increase the rate of mating with males after pathogen exposure and that this increase requires str-44 in AWA neurons. Thus, our results uncover a causal mechanism for pathogen-induced social behaviour plasticity, which can promote genetic diversity and facilitate adaptation of the host animals.

 

 

 

2022
* Liu H#, Wu T#, Canales XG, Wu M, Choi MK, Duan F, Calarco JA, Zhang Y. Forgetting generates a novel state that is reactivatable. #: co-first author. Science Advances. 2022;8 (6) :eabi9071. Publisher's VersionAbstract

Forgetting is defined as a time-dependent decline of a memory. However, it is not clear whether forgetting reverses the learning process to return the brain to the naive state. Here, using the aversive olfactory learning of pathogenic bacteria in C. elegans, we show that forgetting generates a novel state of the nervous system that is distinct from the naive state or the learned state. A transient exposure to the training condition or training odorants reactivates this novel state to elicit the previously learned behavior. An AMPA receptor and a type II serotonin receptor act in the central neuron of the learning circuit to decrease and increase the speed to reach this novel state, respectively. Together, our study systematically characterizes forgetting and uncovers conserved mechanisms underlying the rate of forgetting. 

* Yang W, Wu T, Tu S, Qin Y, Shen C, Li J, Choi MK, Duan F, Zhang Y. Redundant neural circuits regulate olfactory integration. PLoS Genetics. 2022;18 (1) :e1010029. Publisher's VersionAbstract

Olfactory integration is important for survival in a natural habitat. However, how the nervous system processes signals of two odorants present simultaneously to generate a coherent behavioral response is poorly understood. Here, we characterize circuit basis for a form of olfactory integration in Caenorhabditis elegans. We find that the presence of a repulsive odorant, 2-nonanone, that signals threat strongly blocks the attraction of other odorants, such as isoamyl alcohol (IAA) or benzaldehyde, that signal food. Using a forward genetic screen, we found that genes known to regulate the structure and function of sensory neurons, osm-5 and osm-1, played a critical role in the integration process. Loss of these genes mildly reduces the response to the repellent 2-nonanone and disrupts the integration effect. Restoring the function of OSM-5 in either AWB or ASH, two sensory neurons known to mediate 2-nonanone-evoked avoidance, is sufficient to rescue. Sensory neurons AWB and downstream interneurons AVA, AIB, RIM that play critical roles in olfactory sensorimotor response are able to process signals generated by 2-nonanone or IAA or the mixture of the two odorants and contribute to the integration. Thus, our results identify redundant neural circuits that regulate the robust effect of a repulsive odorant to block responses to attractive odorants and uncover the neuronal and cellular basis for this complex olfactory task.

 

2021
* Wasson JA, Harris G, Keppler-Ross S, Brock TJ, Dar AR, Butcher RA, Fische SEJ, Kagias K, Clardy J, Zhang Y^, et al. Neuronal control of maternal provisioning in response to social cues. ^co-corresponding author; Science Advances. 2021;7 (34) :8782. Publisher's VersionAbstract

Mothers contribute cytoplasmic components to their progeny in a process called maternal provisioning. Provisioning is influenced by the parental environment, but the molecular pathways that transmit environmental cues between generations are not well understood. Here, we show that, in Caenorhabditis elegans, social cues modulate maternal provisioning to regulate gene silencing in offspring. Intergenerational signal transmission depends on a pheromone-sensing neuron and neuronal FMRFamide (Phe-Met-Arg-Phe)–like peptides. Parental FMRFamide-like peptide signaling dampens oxidative stress resistance and promotes the deposition of mRNAs for translational components in progeny, which, in turn, reduces gene silencing. This study identifies a previously unknown pathway for intergenerational communication that links neuronal responses to maternal provisioning. We suggest that loss of social cues in the parental environment represents an adverse environment that stimulates stress responses across generations.

DOI: 10.1126/sciadv.abf8782

Morud J, Hardege I, Liu H, Wu T, Choi M-K, Basu S, Zhang Y, Schafer WR. Deorphanization of novel biogenic amine-gated ion channels identifies a new serotonin receptor for learning. Current Biology. 2021;2021 (07) :036. Publisher's VersionAbstract

Pentameric ligand-gated ion channels (LGICs) play conserved, critical roles in both excitatory and inhibitory synaptic transmission and can be activated by diverse neurochemical ligands. We have performed a characterization of orphan channels from the nematode C. elegans, identifying five new monoamine-gated LGICs with diverse functional properties and expression postsynaptic to aminergic neurons. These include polymodal anion channels activated by both dopamine and tyramine, which may mediate inhibitory transmission by both molecules in vivo. Intriguingly, we also find that a novel serotonin-gated cation channel, LGC-50, is essential for aversive olfactory learning of pathogenic bacteria, a process known to depend on serotonergic neurotransmission. Remarkably, the redistribution of LGC-50 to neuronal processes is modulated by olfactory conditioning, and lgc-50 point mutations that cause misregulation of receptor membrane expression interfere with olfactory learning. Thus, the intracellular trafficking and localization of these receptors at synapses may represent a molecular cornerstone of the learning mechanism.

 

DOI: 10.1016/j.cub.2021.07.036

*Yang W, Wu T, Tu S, Choi M-K, Duan F, Zhang Y. Redundant neural circuits regulate olfactory masking. bioRxiv. 2021;2021 (04.19) :440489. Publisher's VersionAbstract

Olfactory masking is a complex olfactory response found in humans. However, the mechanisms whereby the presence of one odorant masks the sensory and behavioral responses elicited by another odorant are poorly understood. Here, we report that Caenorhabditis elegans displays olfactory masking and that the presence of a repulsive odorant, 2-nonanone, that signals threat strongly masks the attraction of other odorants, such as isoamyl alcohol (IAA) or benzaldehyde that signals food. Using a forward genetic screen, we found that several genes, osm-5, osm-1, and dyf-7, known to regulate the structure and function of sensory neurons played a critical role in olfactory masking. Loss of these genes mildly reduces the response to 2-nonanone and disrupts the masking effect of 2-nonanone. Restoring the function of OSM-5 in either AWB or ASH, two sensory neurons known to mediate 2-nonanone-evoked avoidance, is sufficient to rescue olfactory masking. AWB is activated by the removal of 2-nonanone stimulation or the onset of IAA; however, the mixture of 2-nonanone and IAA stimulates AWB similarly as 2-nonanone alone, masking the cellular effect of IAA. The latency of the AWB response is critical for the masking effect. Thus, our results identify redundant neural circuits that regulate the robust masking effect of a repulsive odorant and uncover the neuronal and cellular basis for this complex olfactory task.

doi: https://doi.org/10.1101/2021.04.19.440489

* Wasson JA#, Harris G#, Keppler-Ross S, Brock TJ, Dar AR, Butcher RA, Fischer SEJ, Kagias K, Clardy J, Zhang Y^, et al. Neuronal control of maternal provisioning in response to social cues. #: co-first author; ^: co-corresponding author. bioRxiv. 2021;10.1101 (2021.02.01) :429208. Publisher's VersionAbstract

Mothers contribute cytoplasmic components to their progeny in a process called maternal provisioning. Provisioning is influenced by the parental environment, but the molecular pathways that transmit environmental cues from mother to progeny are not well understood. Here we show that in C. elegans, social cues modulate maternal provisioning to regulate gene silencing in offspring. Intergenerational signal transmission depends on a pheromone-sensing neuron and neuronal FMRF (Phe-Met-Arg-Phe)-like peptides. Parental FMRF signaling promotes the deposition of mRNAs for translational components in progeny, which in turn reduces gene silencing. Previous studies had implicated FMRF signaling in short-term responses such as modulated feeding behavior in response to the metabolic state1,2, but our data reveal a broader role, to coordinate energetically expensive processes such as translation and maternal provisioning. This study identifies a new pathway for intergenerational communication, distinct from previously discovered pathways involving small RNAs and chromatin, that links sensory perception to maternal provisioning.

 

 

doi: https://doi.org/10.1101/2021.02.01.429208

2020
Alcedo J, Jin Y, Portman DS, Prahlad V, Raizen D, Rapti G, Xu SXZ, Zhang Y, Wu C-F. Nature's gift to neuroscience. J Neurogenet. 2020;34 ((3-4) :223-224. Publisher's VersionAbstract

PMID: 33446019

DOI: 10.1080/01677063.2020.1841760

*Liu H, Zhang Y. What can a worm learn in a bacteria-rich habitat?. J Neurogenet . 2020;(15) :1-9. Publisher's VersionAbstract

With a nervous system that has only a few hundred neurons, Caenorhabditis elegans was initially not regarded as a model for studies on learning. However, the collective effort of the C. elegans field in the past several decades has shown that the worm displays plasticity in its behavioral response to a wide range of sensory cues in the environment. As a bacteria-feeding worm, C. elegans is highly adaptive to the bacteria enriched in its habitat, especially those that are pathogenic and pose a threat to survival. It uses several common forms of behavioral plasticity that last for different amounts of time, including imprinting and adult-stage associative learning, to modulate its interactions with pathogenic bacteria. Probing the molecular, cellular and circuit mechanisms underlying these forms of experience-dependent plasticity has identified signaling pathways and regulatory insights that are conserved in more complex animals.

PMID: 33054485

 

 

 

 

 

 

  DOI: 10.1080/01677063.2020.1829614

Koterniak B, Pilaka PP, Gracida X, Schneider L-M, Pritišanac I, Zhang Y, Calarco JA. Global regulatory features of alternative splicing across tissues and within the nervous system of C. elegans. Genome Research. 2020;(267328) :120. Publisher's VersionAbstract

Alternative splicing plays a major role in shaping tissue-specific transcriptomes. Among the broad tissue types present in metazoans, the central nervous system contains some of the highest levels of alternative splicing. While many documented examples of splicing differences between broad tissue-types exist, there remains much to be understood about the splicing factors and the cis sequence elements controlling tissue and neuron subtype-specific splicing patterns. Using Translating Ribosome Affinity Purification coupled with deep-sequencing (TRAP-seq) in C. elegans, we have obtained high coverage profiles of ribosome-associated mRNA for three broad tissue classes (nervous system, muscle, and intestine) and two neuronal subtypes (dopaminergic and serotonergic neurons). We have identified hundreds of splice junctions that exhibit distinct splicing patterns between tissue types or within the nervous system. Alternative splicing events differentially regulated between tissues are more often frame-preserving, conserved across Caenorhabditis species and enriched in specific cis regulatory motifs. Utilizing this information, we have identified a likely mechanism of splicing repression by the RNA-binding protein UNC-75/CELF via interactions with cis elements that overlap a 5' splice site. Alternatively spliced exons also overlap more frequently with intrinsically disordered peptide regions than constitutive exons. Moreover, regulated exons are often shorter than constitutive exons but are flanked by longer intron sequences. Among these tissue-regulated exons are several highly conserved microexons less than 27 nucleotides in length. Collectively, our results indicate a rich layer of tissue-specific gene regulation at the level of alternative splicing in C. elegans that parallel the evolutionary forces and constraints observed across metazoa.

 

 

 

 

PMID: 33127752 DOI: 10.1101/gr.267328.120

* Pereira AG, Gracida X, Kagias K, Zhang Y. C. elegans aversive olfactory learning generates diverse intergenerational effects. J Neurogenet. 2020;10 (1080) :1-11. Publisher's VersionAbstract

Parental experience can modulate the behavior of their progeny. While the molecular mechanisms underlying parental effects or inheritance of behavioral traits have been studied under several environmental conditions, it remains largely unexplored how the nature of parental experience affects the information transferred to the next generation. To address this question, we used C. elegans, a nematode that feeds on bacteria in its habitat. Some of these bacteria are pathogenic and the worm learns to avoid them after a brief exposure. We found, unexpectedly, that a short parental experience increased the preference for the pathogen in the progeny. Furthermore, increasing the duration of parental exposure switched the response of the progeny from attraction to avoidance. To characterize the underlying molecular mechanisms, we found that the RNA-dependent RNA Polymerase (RdRP) RRF-3, required for the biogenesis of 26 G endo-siRNAs, regulated both types of intergenerational effects. Together, we show that different parental experiences with the same environmental stimulus generate different effects on the behavior of the progeny through small RNA-mediated regulation of gene expression.

 

doi: 10.1080/01677063.2020.1819265
Morud J, Hardege I, Liu H, Wu T, Basu S, Zhang Y, Schafer WR. Deorphanisation of novel biogenic amine-gated ion channels identifies a new serotonin receptor for learning. bioRxiv . 2020;10 (1101). Publisher's VersionAbstract

Pentameric ligand-gated ion channels (LGCs) play conserved, critical roles in fast synaptic transmission, and changes in LGC expression and localisation are thought to underlie many forms of learning and memory. The C. elegans genome encodes a large number of LGCs without a known ligand or function. Here, we deorphanize five members of a family of Cys-loop LGCs by characterizing their diverse functional properties that are activated by biogenic amine neurotransmitters. To analyse the neuronal function of these LGCs, we show that a novel serotonin-gated cation channel, LGC-50, is essential for aversive olfactory learning. lgc-50 mutants show a specific defect in learned olfactory avoidance of pathogenic bacteria, a process known to depend on serotonergic neurotransmission. Remarkably, the expression of LGC-50 in neuronal processes is enhanced by olfactory conditioning; thus, the regulated expression of these receptors at synapses appears to represent a molecular cornerstone of the learning mechanism.

doi: https://doi.org/10.1101/2020.09.17.301382
*Choi, Myung-Kyu, Liu H, Wu T, Yang W, Zhang Y. NMDAR-mediated modulation of gap junction circuit regulates olfactory learning in C. elegans. Nature Communications . 2020;11 (3467). Publisher's VersionAbstract

Modulation of gap junction-mediated electrical synapses is a common form of neural plasticity. However, the behavioral consequence of the modulation and the underlying molecular cellular mechanisms are not understood. Here, using a C. elegans circuit of interneurons that are connected by gap junctions, we show that modulation of the gap junctions facilitates olfactory learning. Learning experience weakens the gap junctions and induces a repulsive sensory response to the training odorants, which together decouple the responses of the interneurons to the training odorants to generate learned olfactory behavior. The weakening of the gap junctions results from downregulation of the abundance of a gap junction molecule, which is regulated by cell-autonomous function of the worm homologs of a NMDAR subunit and CaMKII. Thus, our findings identify the function of a gap junction modulation in an in vivo model of learning and a conserved regulatory pathway underlying the modulation.

2019
* Wu T, Duan F, Yang W, Liu H, Caballero A, Fernandes de Abreu DA, Dar AR, Alcedo J, Ch’ng Q, Butcher RA, et al. Pheromones modulate learning by regulating the balanced signals of two insulin-like peptides. Neuron. 2019;2019.09.006. Publisher's VersionAbstract

Social environment modulates learning through unknown mechanisms. Here, we report that a pheromone mixture that signals overcrowding inhibits C. elegans from learning to avoid pathogenic bacteria. We find that learning depends on the balanced signaling of two insulin-like peptides (ILPs), INS-16 and INS-4, which act respectively in the pheromone-sensing neuron ADL and the bacteria-sensing neuron AWA. Pheromone exposure inhibits learning by disrupting this balance: it activates ADL and increases expression of ins-16, and this cellular effect reduces AWA activity and AWA-expressed ins-4. The activities of the sensory neurons are required for learning and the expression of the ILPs. Interestingly, pheromones also promote the ingestion of pathogenic bacteria while increasing resistance to the pathogen. Thus, the balance of the ILP signals integrates social information into the learning process as part of a coordinated adaptive response that allows consumption of harmful food during times of high population density.

DOI:https://doi.org/10.1016/j.neuron.2019.09.006

 

* Pereira A, Gracida X, Kagias K, Zhang Y. Learning of pathogenic bacteria in adult C. elegans bidirectionally regulates pathogen response in the progeny. BioRxiv. 2019;doi:10.1101/500264. Publisher's VersionAbstract

Parental experience can generate adaptive changes in the behavioral and physiological traits of the offspring13. However, the biological properties of this intergenerational regulation and the underlying molecular and cellular mechanism are not well understood. Here, we show that the experience of learning to avoid pathogenic bacteria in C. elegans alters the behavioral response to the pathogen in the progeny through the endogenous RNA interference (RNAi) pathway. We previously show that the adult C. elegans learns to avoid the smell of pathogenic bacteria, such as the Pseudomonas aeruginosa strain PA14, after feeding on the pathogen for a few hours4,5. Here, we report that this learning experience can bidirectionally regulate the olfactory response to PA14 in the progeny that are never directly exposed to the pathogen. The olfactory preference for PA14 in these progeny is linearly correlated with the learned avoidance of PA14 in their mothers. If the mothers show strong learning of PA14, their progeny avoid PA14; intriguingly, if the mothers show weak learning of PA14, the progeny prefer PA14, suggesting that the PA14-trained mothers transmit both the negative and positive information of PA14 to their progeny. The intergenerational behavioral effect results from an altered behavioral decision regulated by an olfactory sensorimotor neural circuit. Learning to avoid the pathogen also influences the development of the progeny, which is regulated independently from the behavioral change. Animals mutated for the RRF-3/RNA-directed RNA polymerase, a master regulator for the synthesis of the small interfering RNAs that are maternally inherited or in the soma6,7, display the normal naive and learned response to PA14 but are defective in regulating the olfactory response to PA14 in their progeny. Our results characterize an intergenerational effect that allows the progeny to rapidly adapt to an environmental condition that is critical for survival.

doi: https://doi.org/10.1101/500264
* Harris G, Wu T, Linfield G, Choi M-K, Liu H, Zhang Y. Molecular and cellular modulators for multisensory integration in C. elegans. PLoS Genetics. 2019;15(3): e1007706. Publisher's VersionAbstract

In the natural environment, animals often encounter multiple sensory cues that are simultaneously present. The nervous system integrates the relevant sensory information to generate behavioral responses that have adaptive values. However, the neuronal basis and the modulators that regulate integrated behavioral response to multiple sensory cues are not well defined. Here, we address this question using a behavioral decision in C. elegans when the animal is presented with an attractive food source together with a repulsive odorant. We identify specific sensory neurons, interneurons and neuromodulators that orchestrate the decision-making process, suggesting that various states and contexts may modulate the multisensory integration. Among these modulators, we characterize a new function of a conserved TGF-β pathway that regulates the integrated decision by inhibiting the signaling from a set of central neurons. Interestingly, we find that a common set of modulators, including the TGF-β pathway, regulate the integrated response to the pairing of different foods and repellents. Together, our results provide mechanistic insights into the modulatory signals regulating multisensory integration.

https://doi.org/10.1371/journal.pgen.1007706

2018
*Donato A, Kagias K, Zhang Y#, Hilliard MA&. Neuronal sub-compartmentalization: a strategy to optimize neuronal function. #: Co-first authors. &:Co-senior authors. Biol Rev Camb Philos Soc. 2018;doi:10.1111/brv.12487. Publisher's VersionAbstract
Neurons are highly polarized cells that consist of three main structural and functional domains: a cell body or soma, an axon, and dendrites. These domains contain smaller compartments with essential roles for proper neuronal function, such as the axonal presynaptic boutons and the dendritic postsynaptic spines. The structure and function of these compartments have now been characterized in great detail. Intriguingly, however, in the last decade additional levels of compartmentalization within the axon and the dendrites have been identified, revealing that these structures are much more complex than previously thought. Herein we examine several types of structural and functional sub‐compartmentalization found in neurons of both vertebrates and invertebrates. For example, in mammalian neurons the axonal initial segment functions as a sub‐compartment to initiate the action potential, to select molecules passing into the axon, and to maintain neuronal polarization. Moreover, work in Drosophila melanogaster has shown that two distinct axonal guidance receptors are precisely clustered in adjacent segments of the commissural axons both in vivo and in vitro, suggesting a cell‐intrinsic mechanism underlying the compartmentalized receptor localization. In Caenorhabditis elegans, a subset of interneurons exhibits calcium dynamics that are localized to specific sections of the axon and control the gait of navigation, demonstrating a regulatory role of compartmentalized neuronal activity in behaviour. These findings have led to a number of new questions, which are important for our understanding of neuronal development and function. How are these sub‐compartments established and maintained? What molecular machinery and cellular events are involved? What is their functional significance for the neuron? Here, we reflect on these and other key questions that remain to be addressed in this expanding field of biology.
* Hao Y#, Yang W#, Hall Q, Ren J, Zhang Y&, Kaplan JM&. Thioredoxin shapes C. elegans sensory response to Pseudomonas produced nitric oxide. #: Co-first authors. &: Co-senior authors. eLife. 2018;pii: e36833. Publisher's VersionAbstract

Nitric oxide (NO) is released into the air by NO-producing organisms; however, it is unclear if animals utilize NO as a sensory cue. We show that C. elegans avoids Pseudomonas aeruginosa (PA14) in part by detecting PA14-produced NO. PA14 mutants deficient for NO production fail to elicit avoidance and NO donors repel worms. PA14 and NO avoidance are mediated by a chemosensory neuron (ASJ) and these responses require receptor guanylate cyclases and cyclic nucleotide gated ion channels. ASJ exhibits calcium increases at both the onset and removal of NO. These NO-evoked ON and OFF calcium transients are affected by a redox sensing protein, TRX-1/thioredoxin. TRX-1’s trans-nitrosylation activity inhibits the ON transient whereas TRX-1’s de-nitrosylation activity promotes the OFF transient. Thus, C. elegans exploits bacterially produced NO as a cue to mediate avoidance and TRX-1 endows ASJ with a bi-phasic response to NO exposure.

https://doi.org/10.7554/eLife.36833.001
* Liu H, Yang W, Wu T, Duan F, Soucy E, Jin X, Zhang Y. Cholinergic sensorimotor integration regulates olfactory steering. Neuron. 2018;97 (2) :390-405. Publisher's VersionAbstract
Sensorimotor integration regulates goal-directedmovements. We study the signaling mechanismsunderlying sensorimotor integration inC.elegansduring olfactory steering, when the sinusoidal move-ments of the worm generate an in-phase oscillation inthe concentration of the sampled odorant. We showthat cholinergic neurotransmission encodes theoscillatory sensory response and the motor state ofhead undulations by acting through an acetylcho-line-gated channel and a muscarinic acetylcholinereceptor, respectively. These signals convergeon two axonal domains of an interneuron RIA,where the sensory-evoked signal suppresses themotor-encoding signal to transform the spatial infor-mation of the odorant into the asymmetry betweenthe axonal activities. The asymmetric synaptic out-puts of the RIA axonal domains generate a direc-tional bias in the locomotory trajectory. Experiencealters the sensorimotor integration to generatespecific behavioral changes. Our study reveals howcholinergic neurotransmission, which can representsensory and motor information in the mammalianbrain, regulates sensorimotor integration duringgoal-directed locomotions.

Pages